A good match of the initial depth-velocity model with seismic data largely determines the quality and deadline of the depth migration.
Based on the analysis of all available a priori geological information and well data, PetroTrace specialists select the optimal approach for building the initial velocity model.
Many years of experience allows us to build a wide range of models: from simple gradient models to models with complex boundary topology and contrasting velocity layers, which enables us to effectively model such structural elements as salt bodies, intrusive bodies and thrust structures.
Obtaining a velocity model that well describes the observed seismic data is an important depth-processing task, since the quality of the final depth velocity model affects the migration result.
One criterion for depth velocity model quality is good straightness of in-phase axes on depth gathers after migration. The main data for refining the depth velocity model are residual kinematic moveouts, for the analysis and picking of which PetroTrace uses innovative interactive and automatic procedures.
PetroTrace specialists perform depth velocity model refinement using different methods, such as: controlled velocity inversion (Constrained Velocity Inversion); layer-by-layer and mesh 3D tomography, FWI.
Comparison of 3D Kirchhoff depth migration (left) and 3D CRAM (right).
The features of the seismo-geological conditions of a particular area of work and the parameters of field observations dictate the choice of the optimal migration algorithm for solving the geological problems posed.
PetroTrace specialists have in their arsenal a complete set of migration transformation technologies based both on ray tracing and wave equation solutions. Extensive experience of application of various migration algorithms allows us to choose and recommend the most effective solution for optimal imaging of the environment in a particular geological setting, allowing us to meet even the tightest project deadlines.
Information about the location of low-amplitude faults, fractures, karsts and other low-dimensional environmental elements can play a key role in the successful development of oil and gas fields. Traditional methods of localizing such elements, based on calculating various attributes from data after standard processing, are ineffective, since the goal of such processing is to obtain an optimal image of extended reflecting boundaries and small-sized elements of the medium can be completely lost in the processing. Meanwhile, such objects are often diffractors, and analysis of the scattered components of seismic waves can help to locate them.
However, the diffraction component of the seismic field carries much less energy than the reflected component and requires a special technology for its effective extraction. PetroTrace has developed and implemented its own technique for isolating the scattered component based on the 3-dimensional Radon transform, which allows us to successfully separate reflections and diffractions on depth-migrated seismograms in the angle domain. The energy cube of scattered waves, resulting from special adaptive pre-stack processing, helps to more confidently localize low-amplitude disturbances, fractures, karsts and other low-dimensional elements of the medium. Highlighting and mapping these elements allows you to refine interpretation, improve the reliability of geologic/hydrodynamic modeling and make more informed decisions about planning new wells.
United Kingdom
Dukes Court
Woking
Surrey
UK, GU21 5BH
t: +44 (0)1483 662 421
e: [email protected]
egypt
Free Zone, Nasr City,
15, Arafa Building, Cairo, Egypt
t: +2-01555630219
f: +2-02-27314078
e: [email protected]
© 2010–2023 PetroTrace